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With advancing age, all organ systems undergo 
anatomical and functional changes. Vasculature suffers 
generalized stiffening as a hallmark of this process. 
Although this phenomenon has been described long ago, 
only in recent years has the clinical significance of the 
stiffening of the large arteries been widely understood 
and its correlation with hypertension, coronary heart 
disease, stroke, heart failure and atrial fibrillation has 
been recognized. It has also been accepted that it 
mediates the vascular effects of diabetes mellitus, 
atherosclerosis and renal disease. 1-5  

The arterial systems consists of two functional 
components with different structural characteristics: a) 
the large elastic arteries (aorta, carotid and iliac arteries) 
which store part of the blood ejected during systole and 
expel it to the periphery during diastole to provide the 
tissues with a relatively steady flow through the entire 
cardiac cycle and b) the muscular arteries (arteries below 
the axillary and femoral ones) which regulate the vascular 
tone and hence determine the peripheral resistance. The 
former have a thick tunica media in which the elastic 
fibers dominate and form numerous concentric layers. 
The later possess a tunica media characterized mainly by 
smooth muscle cells and the elastic component is 
confined to the thin internal and external elastic laminae. 
The different mechanical properties of the arterial tree 
along its course and the varying diameter of the arterial 
branches, gives rise to the reflected waves which are 
produced when the pulse wave encounters sites with 
different impedance. A part of these secondary waves 
amplifies the forward moving wave and another part 
moves backward to enhance the pressure of the central 
aorta. Normally it reaches its target in late systole or early 
diastole and it contributes to the diastolic flow towards 
the coronary arteries and the periphery (Fig. 1).6-10  

 
Figure 1. Reflected waves and their contribution in systolic & 
diastolic aortic pressure. A: young, healthy adult. B: elderly, 
hypertensive patient. PP = pulse pressure 

With increasing age and the influence of 
cardiovascular risk factors (hypertension, diabetes, salt 
intake) and genetic factors (gene polymorphisms in ACE, 
angiotensin receptors, endothelin receptors, collagen and 
other connective tissue components) the great elastic 
vessels undergo elastin depletion and fragmentation and 
collagen deposition resulting in thickening of the intima. 
Infiltration of the vessel wall by macrophages, 
mononuclear cells, smooth muscle cells and increased 
presence of matrix metalloproteases, TGF-β and adhesion 
molecules also occurs. 11-16 These structural changes lead 
to the stiffening of the vessel and a rise in the velocity of 
the propagating and reflected pulse wave. As a 
consequence the retrograde directed wave arrives in the 
central aorta during early systole, augmenting the systolic 
pressure rather than the diastolic one. Moreover, the 
endothelial dysfunction which arises under these 
circumstances promotes arterial stiffening and is 
accentuated by it, completing a vicious circle of NOS 
reduction and vascular dysfunction. 17 The reduced 
vascular compliance is clinically reflected in increased 
systolic arterial pressure and pulse pressure (the 
difference between systolic and diastolic pressure), and it 
correlates with cardiovascular and cerebrovascular 
episodes, heart failure. 18- 20  

Several methods to measure aortic stiffness have been 
described. Direct measurements are obviously impractical 
because of the difficulty to access the vessel lumen. Thus, 
techniques of indirect measurement have been developed, 
which estimate either the central or peripheral vessel 
compliance. The simplest way to assess aortic stiffness is 
to measure pulse pressure (PP), which depends on cardiac 
output, elastic arteries stiffness and wave reflection. As 
age progresses, systolic pressure rises and diastolic 
pressure remains relatively constant between 50-60 years 
of age and declines thereafter. Thus, in older individuals 
PP increases and represents a good surrogate measure-
ment for central arterial stiffness. Pulse pressure values 
have been shown to predict cardiovascular events both in 
healthy persons and patients with hypertension or 
diabetes mellitus. 21-28 However, the researcher needs to 
keep in mind that PP depends on other factors beyond 
aortic stiffness as well, it cannot be conclusive in cases of 
aortic insufficiency or arteriovenous malformations and 
that the measurement of PP is based on the measurement 
of peripheral arterial systolic and diastolic pressures, 
which can be substantially different from central ones. 29 
Furthermore, in large conduit vessels, PP is related to the 
mean arterial pressure since the pressure-volume 
relationship is non-linear. A drop in blood pressure could 
therefore decrease PP without exerting a direct effect on 
the arterial wall. For that reason the index stroke volume 
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/pulse pressure (SV/PP) has been developed to 
compensate for the influence of volume changes during 
systole on blood pressure. This index has been evaluated 
in the general population and in hypertensive patients and 
is considered a predictor of cardiovascular events. 30, 31  

The method considered the “gold standard” to assess 
arterial stiffness is the measurement of pulse wave 
velocity (PWV). It is recommended as an index of 
asymptomatic organ damage in hypertensive patients by 
the recent guidelines published by the European Society 
of Hypertension (ESH). 32 According to the Moens-
Korteweg equqtion [Co= √(Eh/2Rρ)] 33, PWV depends on 
wall thickness (h), vessel radius (r), density of the fluid 
that flows in the lumen (ρ) and vessel distensibility as 
expressed by Young’s modulus (E). PWV is determined 
by simultaneously recording the pulse in the carotid and 
femoral arteries and dividing the distance between them, 
which is measured over the body surface using a tape, by 
the time interval between fiduciary points on the pressure 
waveform of the proximal and distal recording sites. 
Some devices calculate the time difference from a certain 
point of the electrocardiogram (ECG) to the pulse wave 
between the two sites of interest. A value exceeding 
12m/sec was considered abnormal, until recently when 
the cutoff point has dropped to 10m/sec. 32  

Both distance and time measurement are prone to 
errors. Regarding distance, differences in body shape are 
not taken into consideration and an assumption that the 
aorta is straight is made. The time variable presents a 
difficulty in identifying the start of the pulse cycle in the 
recorder waveform. The same point in both waveforms 
must be used to ensure proper timing; however this can 
be challenging because of the different pulse waveform 
contour in the central and peripheral recording.  

PWV varies from vessel to vessel. It is reported that 
typical velocities in ascending the ascending aorta would 
be around 4 m/sec, in the abdominal aorta and carotid 
arteries 5 m/sec, in the brachial artery 7 m/sec and in the 
iliac arteries 8 m/sec. 34 The measurement of PWV along 
the aorta or aorto-iliac axis is considered the most 
clinically relevant and compared to PWV in other 
locations it has been better correlated with progressing 
age and other cardiovascular risk factors. 35, 36 Increased 
aortic stiffness as assessed by PWV is associated with 
mortality in renal failure, diabetes mellitus and 
hypertension 37- 39 and can predict cardiovascular and 
coronary events. 40 It is also related to rheumatoid 
arthritis, systemic lupus erythematosus, Takayasu’s 
arteritis, elevated homocysteine, hypothyreoidism, 
metabolic syndrome and cognitive dysfunction. 41-46  

Pressure recordings are feasibly obtained in central 
and large peripheral vessels but cannot be acquired in 

small arteries. However, small vessel mechanical 
properties are reflected in large vessel behaviour and 
frequently they are the very first site affected by the 
pathological vascular processes. 47, 48 Moreover, pulse 
waveform derived from large arteries can provide 
information about the characteristics of small vessels. 
This technique, called pulse waveform analysis, requires 
a more sophisticated pressure recording (applanation 
tonometry) and evaluates the magnitude and timing of 
reflected waves by analyzing the diastolic pressure decay 
part of the waveform. 49 The computerized analysis of 
diastolic phase with the employment of mathematical 
models can provide an assessement of large and small 
artery compliance. 50  

Unfortunately, aorta, which is the most important 
vessel to determine arterial stiffness, is not available to 
application of applanation tonometry techniques, because 
invasive access is required. However, it is possible to 
predict the pressure waveform in the central aorta by 
mathematically processing the waveform recorded in 
peripheral sites (e.g. radial artery). The mathematical 
functions (“transfer functions”) used take into account the 
mechanical properties of the vascular bed that lies 
between the sites of interest and recording, but their 
reliability has been put to the question.51,52 In fact, 
transfer function are derived in healthy individuals and 
their applicability in diseased vascular beds is doubted. 53 
Furthermore, the tonometry procedure itself is prone to 
several errors of technical nature, and the results differ 
significantly with regard to the tonometer calibration 
method, using as standard the invasive versus non-
invasive blood pressure measurement. 54  
 

 
Figure 2. Calculation of augmentation index. PP:pulse pressure 
 

The start of the reflected wave is usually visible in the 
pressure waveform as an inflection point. The increment 
of pressure from this point up to the peak aortic pressure 
calculated as a percentage of pulse pressure, is called 
augmentation index (AI) (Fig. 2). Augmentation index 
has a correlation with PWV and it is elevated in cases of 
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diabetes mellitus, smoking, hupercholesterolaemia, and 
raised hsCRP, while it is inversely related to endothelial 
function as assessed by flow-mediated dilatation in the 
brachial artery. 55-59 AI increases with age and it may be a 
more sensitive tool to assess arterial stiffness than PWV 
in young (<50 years old) individuals. 59 It is also reported 
to correlate with prognosis in end-stage renal failure. 60 
AI measurement is significantly influenced by heart rate 
(increases in heart rate lead to reductions in AI) and 
ejection fraction (in heart failure the results are 
unreliable), and it must be calculated from waveforms 
recorded in central arteries. 61,62  

Direct calculation of arterial compliance can be 
achieved by simultaneously measuring the vessel 
diameter and pressure. The former variable can be 
determined by ultrasound or MRI; the later would require 
an intravascular catheter which apart from the technical 
difficulties and complication risks, it can also affect local 
blood flow. Intravascular ultrasound devices with 
pressure transducer have been used. 63, 64 However this 
method can potentially obtain an accurate measurement 
but confined in a small portion of the artery, the 
mechanical properties of which may be substantially 
different along its length. 

Lately, genetic studies have revealed an influence of 
heritability in the development of arterial stiffness. 
Heritability estimates are repoted between 0.18 and 0.37 
for augmentation index, 0.13 and 0.54 for pulse pressure 
and around 0.4 for PWV. 65-71 Several candidate genes 
have been recognized which encode either for proteins 
involved in cell proliferation and vascular hypertrophy, or 
for molecules regulating blood pressure, vascular tone 
(renin-angiotensin system, NO synthase, adrenergic 
receptors, endothelin etc) and structural properties of the 
arteries (collagen, elastin, fibrillin) as reviewed by 
Yasmin and Kevin O’ Shaughnessy. 71 Furthermore, the 
role if inflammation has emerged, as activation of matrix 
metalloproteinases and numerous cytokines takes place in 
the diseased vessel wall. 72 

Arterial stiffness has not yet been targeted by specific 
therapeutic maneuvers. There are scarse evidence that 
statins, β-blockers and renin-angiotensin system 
inhibitors can improve the elastic properties of the 
arteries. 73-76 Advanced glycosylation end-products 
(AGE) have been given a pathophysiological role in 
arterial stiffening and specific drugs which inhibit AGE 
formation such as pimagedine have been tested in 
diabetic patients with hardly encouraging results. 
ACTION I trial failed to achieve its primary end-point 
(time to doubling of serum creatinine equal in both 
groups) but the drug reducer proteinuria and decelerated 
retinopathy progression. ACTION II was prematurely 

stopped due to drug toxicity.77,78 Drugs that disorganize 
AGE crosslinks have also been developed but studies in 
humans are still few. Alagebrium (ALT-711) has 
improved endothelial function and arterial stiffness 
indices.79 The addition of sodium nitrite (a derivative of 
nitrates contained in fruits and vegetables) and curcumin 
(an ingredient of Indian diet) in the diet has provided 
some encouraging evidence although still confined to 
animal models. 81-82 However, more trials are needed so 
that the novel therapeutic approaches can find their place 
in everyday clinical practice. Until then, the control of 
classical risk factors will play a cardinal role in pre-
serving good health, quality & function of blood vessels.  
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