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Abstract  

Diabetes mellitus (DM) is nowadays considered an 
epidemic in the industrialized world. Among other 
complications, it affects the heart and is accompanied by an 
increased cardiovascular mortality. The development of heart 
failure (HF) in DM occurs independently of any coronary artery 
disease or hypertension, and this entity is termed “diabetic 
cardiomyopathy”. Cardiac hypertrophy, abnormal ventricular 
strain features, diastolic dysfunction and subsequently systolic 
impairment are the cardinal imaging characteristics. The 
pathophysiology of the disease is complex and multifactorial 
and, as a consequence, the therapeutic options, on top of the 
conventional HF medications, should aim at reversing the 
pathophysiological processes. Hereby we briefly review the 
manifestations of diabetic cardiomyopathy, describe the 
pathogenetic mechanisms and discuss the potential therapeutic 
targets. Rhythmos 2019;14(4):71-76.  
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Abbreviations: CAD = coronary artery disease; CV = 
cardiovascular; DM = diabetes mellitus; HF = heart failure; 
LVEF = left ventricular ejection fraction 
 
Introduction  

Diabetes mellitus (DM) has reached epidemic 
proportions in the western world. It is associated with 
increased cardiovascular (CV) mortality independently of 
the presence of coronary artery disease (CAD).1-2 CV 
complications are the main cause of mortality in diabetic 
individuals 3 and CAD accounts for the majority of the CV 
deaths and heart failure (HF) cases.4 The latter are 
accompanied by poor clinical outcomes, with 5-year 
survival rates often not exceeding 25%. 5 Interestingly, the 
incidence of HF among diabetics remains elevated even 
after adjustment for CAD and hypertension. 6 To describe 
and characterize this entity, the term “diabetic 
cardiomyopathy” was proposed,7 referring to the left 
ventricular (LV) dysfunction not related to epicardial 
CAD, valvular abnormalities or hypertension. In this brief 
overview we summarize the structural features, the 
pathophysiological considerations and the therapeutic 
options with regard to this increasingly evolving entity, 
focusing on type 2 DM, since the available data on type 1 
DM are scarce and do not permit definite conclusions. 
 
The heart in diabetes 

The first description of the diabetic heart by Rubler et 
al 7 included myocardial hypertrophy, extensive fibrotic 

changes and hypertrophy of the myofibrils. Since then, the 
progress in imaging technology has permitted non-
invasive detailed characterization of the cardiac geometry 
and several studies have demonstrated a variety of 
structural alterations. An increase of the LV mass has been 
observed, which may reach 3 g for every 1% rise in HbA1c 
value. 8,9 The commonest feature is concentric remodeling 
and it represents a precursor of overt HF. Eccentric 
remodeling is less common and its relation with CV 
disease and mortality is less well established.10,11 In more 
advanced stages, loss of cardiomyocytes and interstitial 
fibrosis develops, and its extent has been correlated with 
the glycemic control. 12-14  

Despite the association between HF and diabetes, most 
studies have failed to detect reductions in LV ejection 
fraction (LVEF). One should keep in mind however, that 
LVEF is an index which lacks sensitivity and is not 
affected until the late stages of the heart disease. Diastolic 
dysfunction is a more consistent finding and is thought to 
represent the early functional change in DM, observed in 
up to 75% of normotensive, asymptomatic patients. 2,15 The 
presence of asymptomatic diastolic impairment relates to 
the subsequent development of overt HF and contributes 
to mortality.16,17 Abnormal tissue Doppler parameters have 
been observed in asymptomatic type 1 (mitral septal and 
lateral E’ velocities, mean ratios E/E’sept, E/E’lat and 
E/E’total) and type 2 (early velocity-Ea, atrial velocity-Aa, 
ratio Ea/Aa and systolic velocity-Sa) diabetic patients at an 
early stage, where conventional echocardiography renders 
normal results. In the latter population an association with 
the degree of insulin resistance has been noted. 18,19  

More advanced techniques assessing myocardial strain 
by tissue Doppler or speckle tracking imaging have shown 
subclinical systolic dysfunction as well, both in patients 
with type 1 and 2 DM, children or adults. 20-23 Reduced 
global longitudinal strain has been more consistently found 
in diabetics compared to other strain indices and its 
assessment has been noted to offer additional prognostic 
value to clinical data, HbA1c and E/E′ ratio. 23    
 
Pathophysiology concepts 
 
Metabolic adaptation of the heart 
 

Normal cardiomyocytes can use free fatty acids (FFA), 
glucose, lactate, ketone bodies, and some amino acids, to 
generate adenosine triphosphate (ATP). The proportional 
utilization of these substrates is a dynamic process 
subjected to a complicated integration and depends on 
substrate availability, oxygen concentration, and 
myocardial workload. Normally, 90% of ATP is produced 
in the mitochondria and 60-70% of that from the oxidation 
of FFA.24 The regulation of the substrate use is achieved 
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via the Randle cycle, where fatty acid oxidation (FAO) 
inhibits glucose uptake, whereas the combination of 
glucose and insulin inhibits FAO. 25 Free fatty acids enter 
the cytosolic compartment via transporters, they are 
esterified to fatty acyl-CoA and depending on myocardial 
demand, are either stored in the myocardial lipid pool or 
enter the mitochondria for β-oxidation via the carnitine 
shuttle. Glucose uptake is mediated by insulin-independent 
(GLUT1) and insulin-dependent transporters (GLUT4). In 
diabetes, absolute or relative insulin deficiency increases 
circulating FFA, which activate peroxisome proliferator 
activated receptor-a (PPARa), a transcription factor that 
upregulates myocardial FFA uptake and metabolism. The 
abundant FFA in the myocardial cytosol is diverted 
towards the production of diacylglycerol and ceramide 
which cause myocyte apoptosis. Increased FAO has been 
shown to be associated with increased myocardial oxygen 
consumption (MVO2), not accompanied by an equivalent 
increase in cardiac contractility, which corresponds to 
reduced cardiac efficiency (cardiac work/MVO2). The 
process underlying this result is fatty acid-induced 
impairment of oxidative phosphorylation and uncoupling 
of ATP synthesis from oxygen consumption. Reactive 
oxygen species are over produced leading to mitochondrial 
dysfunction through oxidative stress and further 
compromise ATP production. This sequence of 
pathophysiologic events is known as “lipotoxicity” 26,27.  

The accumulation of FFA and their oxidation, albeit 
relatively deficient, inhibits glucose utilization in 
accordance to the regulation of the Randle cycle. Thus, 
cardiac glucose oxidation is reduced by 30–40%.25,28 
Elevated cardiomyocyte glucose levels can non-
enzymatically glycate proteins to form advanced glycation 
end-products (AGEs), which enhance reactive oxygen 
species (ROS) production and can cross-link and damage 
macromolecules.  

The distorted metabolic profile and the compromised 
mitochondrial function are reflected in the loss of energy 
balance in the myocardial cell. Diabetic patients have a 
lower myocardial phosphocreatine (PCr)/ATP than the 
matched healthy controls, suggesting they are ‘cardiac 
energy-deficient’. 29 This energy deficit has been observed 
to increase with exercise, indicating impaired cardiac 
metabolic reserve. 30  
 
Microangiopathy 

Coronary microvascular disease may also account for 
the cardiac phenotype of DM, at least in part. Epicardial 
CAD is a well-known complication which is associated 
with cardiac manifestations in diabetic patients. However, 
the concept of diabetic cardiomyopathy precludes the 
presence of significant coronary lesions. Endothelial 

dysfunction, metabolic derangement of the smooth muscle 
cells and hormone production and release dysregulation 
have been proposed to contribute, in combination with 
oxidative stress and altered cellular signaling, to 
vasoconstriction and structural remodeling of the coronary 
vessels.31,32 Hyperglycemia, hyperlipidemia, and 
activation of the neurohumoral system may promote 
alterations in the function and permeability of the 
endothelium, increased reactivity of the smooth muscle 
cells and adhesion of inflammatory cells and 
thrombocytes, to induce vasoconstriction and stimulation 
of the signaling pathways that result in fibrosis.32 
Microvascular dysfunction has been correlated with 
albuminuria 33 and the severity of diastolic impairment is 
proportional to the level of microalbuminuria.34 These 
observations suggest a pathogenetic role of micro-
angiopathy in diabetic cardiomyopathy. 
 
Advanced Glycation End Products (AGEs)  
 

Persistent hyperglycemia in diabetes causes glycation, 
a non-enzymatic reaction during which glycose remnants 
covalently bind to various proteins. These altered 
molecules exhibit impaired function and with regard to the 
CV system, are known to cause atherosclerotic plaque 
formation, endothelial dysfunction, and altered responses 
to vascular injury. The AGE levels have been correlated 
with cardiac geometry (LV diastolic diameter) and 
function (isovolumetric relaxation time).35,36  However, the 
effect of tight glycemic control on HF events and diastolic 
function is not yet clear, since several trials have reported 
conflicting results. 32,37,38   
 
Cardiovascular Autonomic Neuropathy 

Dysregulation of the autonomic nervous system is 
known to affect the heart. Sympathetic activation plays a 
key role in the pathophysiology of HF as increases in β1-
adrenergic signaling and expression facilitate interstitial 
fibrosis, cardiomyocyte hypertrophy and impaired 
contractile function accompanied by cardiomyocyte 
apoptosis. 39 Autonomic neuropathy is a common chronic 
complication of DM, present in 20-65% of patients, 
depending on the duration of the disease 40 that impairs 
vascular hemodynamics and heart rhythm. As a 
consequence, it alters the contractile function of the 
myocardium and also influences blood flow in the 
coronary circulation. Both diastolic and systolic 
dysfunction have been observed in patients with diabetic 
autonomic neuropathy and the former has been related to 
the severity of the autonomic imbalance. 41   
 
Inflammation 

DM is widely considered a pro-inflammatory 
condition. In the presence of insulin resistance, 
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macrophages and T lymphocytes are activated. 
Inflammatory cytokines (IL-1β, IL-6, IL-18, TNF-α and 
TGF-β1) secreted by the M1 macrophages facilitate the 
development of dilated cardiomyopathy 42 and the 
secretion of chemokines, growth factors, and 
proinflammatory cytokines by T helper lymphocytes 
results in impaired diastolic relaxation and cardiac fibrosis. 
43 More sophisticated and complex pathways are also 
potentially involved, such as the oxidative stress damage 
via a Ras-related C3 botulinum toxin substrate 1 (RAC1)-
mediated activation of NADPH oxidase and endoplasmic 
reticulum (ER) stress. 44, 45 
 
Activation of the renin-angiotensin-aldosterone system 
(RAAS) 

In the diabetic heart of animal models, there is an 
increased density and expression of the angiotensin II 
receptor. 46 Moreover, intracellular angiotensin II levels 
are 3.4-fold higher in the myocardial cells of diabetic 
patients compared with non-diabetics 47 and hence it is 
supported that hyperglycemia activates the intracardiac 
RAAS, which promotes the proliferation of cardiac 
fibroblasts and cardiomyocyte hypertrophy.  
 
Autophagy 

Autophagy is a physiological process by which long-
lived proteins, ribosomes, lipids and even entire cellular 
organelles are engulfed by double-membrane structures, 
which are subsequently targeted to lysosomes for 
degradation. It is important for the maintenance of normal 
cellular, protein and organellar function. 48,49 Impairment 
of this process causes cardiac dysfunction and heart 
failure. In ischemic injury, during energy depletion, 
autophagy can be protective, whereas in reperfusion injury 
it may be detrimental. 50-52 It is currently believed that the 
degree and duration of autophagy induction determines the 
benefit or harm produced. 53,54 In diabetic heart models, 
autophagy has been observed to be activated (type 2 DM) 
or suppressed (type 1 DM) and the regulatory molecular 
mechanisms to differ. 55,56 Apparently, this novel concept 
deserves more focused research in order to be clarified. 
 
Micro RNAs 
 

Micro RNAs are noncoding, single-strand RNAs with 
an average length of 22 nucleotides, which regulate gene 
expression by either repressing the translation or by 
promoting degradation of target mRNAs. They are very 
popular in basic research lately and diabetic 
cardiomyopathy makes no exception. Recent reports 
implicate miR-143, miR-181, miR-103, miR-107 and 
miR-802 in the pathogenesis of insulin resistance and type 
2 diabetes. 57-59 In animal models, miRNA-1 has been 
linked with cardiomyocyte apoptosis, ventricular 

dilatation and failure, and miRNA-133 and miRNA-30 
regulate connective tissue growth factor expression, 
suggesting a potential contribution to myocardial fibrosis. 
60-61  
 
The contribution of the type of diabetes 

All the previous discussion applies mostly to DM type 
2. Type 1 DM is not as thoroughly studied with regard to 
its cardiac manifestations and their pathophysiological 
mechanisms. Most of the existing studies show a positive 
correlation between type 1 DM and HF. 62-65 Each increase 
of 1% in HbA1c was associated with a 30% higher risk of 
HF, independently of other risk factors and the risk of HF 
in patients with type 1 diabetes was similar to that observed 
in a general population of people that are 15 years older 
compared to the diabetic cohort. 62 Both systolic and 
diastolic dysfunction have been established in type 1 
diabetic patients, and early systolic impairment as evident 
by abnormal systolic strain and strain rate values has also 
been reported. 22,66,67 However, the data on diabetes type 1 
are more variable and whether the cardiac dysfunction is 
attributed exclusively to diabetes has been questioned. 
Furthermore, one should keep in mind that myocardial 
injury may be different in type 1 diabetic patients who are 
usually treated with insulin, which normalizes the 
metabolic derangements induced by insulin deficiency and 
underlie the pathophysiology of the heart disease in 
individuals with type 2 DM. 68  
 
Therapeutic choices  

According to current guidelines, 69 medical therapy in 
patients with HF is the same regardless of the presence or 
absence of DM. The use of angiotensin converting enzyme 
inhibitors (ACEIs) /angiotensin II receptor blockers, beta-
blockers, mineralocorticoid receptor antagonists (MRAs) 
and recently sacubitril/valsartan have been well 
established in cases with reduced LVEF. Ivabradine, 
diuretics, the combination of hydralazine and isosorbide 
dinitrate, and digitalis are also useful, albeit they do not 
prolong survival. The same agents constitute the 
fundamentals of management also in heart failure with 
normal or mid-range ejection fraction, although no 
mortality benefit has ever been demonstrated.  

On the other hand, use of antidiabetic medications in 
patients with HF is somewhat less liberal compared to 
patients without CV disease. While metformin was 
considered contraindicated in HF in the past, data from the 
last decade have overruled this conception and the drug is 
included among the first line agents except for cases with 
severe LV dysfunction. 70,71 Sulfonylureas do not worsen 
HF, 72 but they are not the preferred option due to the risk 
of significant hypoglycemia.32 Thiazolidinediones 
(peroxisome proliferator activated receptor gamma (γ) 
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agonists) cause fluid retention and exaggerate HF, as was 
evident from the RECORD and PROactive trials, 73,74 and 
are not recommended in patients with HF. Dipeptidyl 
peptidase IV (DPP-4) inhibitors have shown conflicting 
results in terms of HF deterioration, 75,76 GLP-1 receptor 
agonists are rather safe but a more robust confirmation is 
needed (encouraging results in the LEADER trial, 77 trend 
towards worse outcome in the FIGHT trial 78) and sodium-
glucose transporter type 2 (SGLT2) inhibitors appear 
beneficial for HF patients. 79,80  

A more sophisticated approach would be to interfere 
with the specific pathophysiological pathways of diabetic 
cardiomyopathy. Modulation of cardiac substrate 
utilization has been attempted with drugs that reduce 
plasma-FFA levels (lipoprotein lipase inhibitors), 
mitochondrial fatty acid uptake (carnitine 
palmitoyltransferase inhibitors) or fatty acid oxidation (β-
oxidation inhibitors). Trimetazidine, an anti-anginal agent 
with antioxidant potential, is a competitive inhibitor of the 
terminal enzyme in β-oxidation, which inhibits oxidative 
phosphorylation and shifts energy production from FFAs 
to glucose oxidation. 81 It also attenuates the damage 
caused by free radicals and calcium overload, preserves 
intracellular ATP and PCr levels, improves endothelial 
function, and inhibits cellular apoptosis. In animal models 
it improves myocardial function by augmenting the 
oxidation status and decreasing lipotoxicity in the heart.82 
In diabetic patients with dilated cardiomyopathy, 
trimetazidine improved systolic function and physical 
activity, decreased C reactive protein and NT-pro BNP 
concentration. 83 Perhexiline, an inhibitor of carnitine 0-
palmitoyltransferase 1, increases LVEF, maximal O2 
consumption, resting and peak stress myocardial function, 
and skeletal muscle energetics, 25 but its use is limited due 
to its potential for peripheral neuropathy and 
hepatotoxicity. 84  

Another therapeutic target could be mitochondrial 
oxidative stress and the dysregulation of oxidative 
phosphorylation. Coenzyme Q10, that acts as an electron 
carrier in mitochondria and as a coenzyme for 
mitochondrial enzymes, 85 improves cardiac function in 
patients with DM and concurrent HF, 86 and it has been 
shown in a randomized controlled trial of chronic HF 
patients to be safe, improve symptoms, and reduce all-
cause and CV mortality by 42% and 43% respectively. 87 
Elamipretide (Szeto-Schiller peptide peptide d-Arg-2′, 6′-
dimethyltyrosine-Lys-Phe-NH2 or SS31) is a positively 
charged free-radical scavenger that can accumulate to high 
levels in the mitochondria. It can prevent diastolic 
dysfunction, fibrosis, and cardiac hypertrophy, it maintains 
the cardiolipin electron-carrying function, protects the 

structure of mitochondrial cristae and promotes oxidative 
phosphorylation. 88 Due to these properties, this molecule 
emerges as a potential option for the reduction of oxidative 
stress and restoration of normal bioenergetics which are 
distorted in the diabetic heart. 

Finally, genetic therapy may in the future offer a 
possibility to manipulate the genes that govern the 
phenotype of diabetic cardiomyopathy. For instance, gene 
delivery of nerve growth factor preserves microvessel 
density, cardiac perfusion, and LV diastolic and systolic 
function, 89 and micro RNA targeted therapy may be of 
benefit for patients with heart disease and diabetes. 
However, research is still active on the field and many 
clinical trials are needed before the theoretical therapeutic 
possibilities become true applicable options and find their 
position in the everyday clinical management of diabetic 
cardiomyopathy. 
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